The Structure of Uranium(III) Triiodide by Neutron Diffraction

By J. H. Levy, J.C.Taylor and P.W.Wilson
Chemical Technology Division, Australian Atomic Energy Commission, Research Establishment, Private Mail Bag, Sutherland, New South Wales, Australia, 2232

(Received 3 September 1974; accepted 29 October 1974)

Abstract

Uranium triiodide, UI_{3}, has been shown to have the PuBr_{3} structure-type by a neutron-diffraction powder study with the profile-fitting refinement technique. UI_{3} is orthorhombic, space group Ccmm ($D_{2 h}^{17}$), with $a=14.011$ (16), $b=4.328$ (5) and $c=10.005$ (11) \AA, and $Z=4$. The uranium atoms lie in positions $4(c) \pm\left(x, 0, \frac{1}{4}\right)$ with $x=0.2562$ (7). Four iodine atoms lie in $4(c)$ with $x=-0.0789$ (9) and eight iodine atoms in positions $8(f), \pm\left(x, 0, z ; x, 0, \frac{1}{2}-z\right)$ with $x=0.3557$ (6) and $z=-0.0661$ (8). The final value of $R=\sum_{i}\left(\left|I_{o_{i}}-I_{c_{i}}\right|\right) / \sum_{i} I_{o_{i}}$, where I_{o} is one of the measured background-corrected intensities in the pattern, was 0.15 . The uranium atom is eight-coordinate, with a bicapped trigonal prismatic coordination polyhedron. The U-I distances are $3 \cdot 244(8)(4 \times)$ and $3 \cdot 165(12)(2 \times) \AA$ to the prism iodines and 3.456 (11) \AA to the cap iodine atoms.

Introduction

Zachariasen (1948) concluded from powder X-ray diffraction studies that UI_{3} was of the PuBr_{3} structuretype, although the atomic positions were not directly determined. In the 26 years that have passed since that date, the UI_{3} structure has not been verified, either by X-ray or neutron diffraction methods.

The PuBr_{3} structure-type (Zachariasen, 1948) is orthorhombic, space group $\mathrm{Ccmm}\left(D_{2 h}^{17}\right)$ with four Pu atoms in positions $4(c), \pm\left(x, 0, \frac{1}{4}\right)$ with $x=0 \cdot 25$, four $\operatorname{Br}(1)$ atoms in positons $4(c)$ with $x=-0 \cdot 07$, and eight $\operatorname{Br}(2)$ in positions $8(f), \pm\left(x, 0, z ; x, 0, \frac{1}{2}-z\right)$ with $x=$ 0.36 and $z=-0.05$. The present neutron-diffraction study of UI_{3} was undertaken to verify the PuBr_{3} structure-type for this compound and measure the positional parameters for the first time. The neutrondiffraction powder method, which does not suffer from the systematic errors of absorption and extinction found in X-ray diffraction work and has more favourable scattering factors, was clearly the best available technique for this purpose.

Experimental and analysis

First, uranium tetraiodide was formed by the reaction of uranium metal turnings with iodine (Bagnall, Brown, Jones \& du Preez, 1965). This tetraiodide was reduced to the triiodide with zinc, at 870 K , in an evacuated silica vessel (Brown \& Edwards, 1972). A sample of the moisture-sensitive compound was sealed in a 12 mm diameter vanadium can, using standard dry-box methods. A neutron-diffraction pattern was collected on the AAEC research reactor, HIFAR, with the elastic diffraction technique (Caglioti, 1970), to $2 \theta=50^{\circ}$, with $\lambda=1.083 \AA$. The line positions were found to agree with a cell of the PuBr_{3} type, and a
least-squares refinement gave the unit-cell constants $a=14.011$ (16), $b=4.328$ (5) and $c=10.005$ (11) \AA. These dimensions were essentially the same as those of Zachariasen (1948) (Table 2). As the e.s.d.'s of these lattice constants were about five times lower than those of Zachariasen (1948) the neutron cell dimensions were used in the following calculations. The neutron pattern is shown in Fig. 1. As expected, some UO_{2} impurity was present in the sample (Brown \& Edwards, 1972). The data from $19 \cdot 3^{\circ}-20 \cdot 2^{\circ}, 32 \cdot 1^{\circ}-33 \cdot 1^{\circ}, 37 \cdot 8^{\circ}-38 \cdot 7^{\circ}$ and $46 \cdot 1^{\circ}-47 \cdot 2^{\circ}$, affected by the UO_{2} impurity, were therefore removed from the analysis. There remained 369 observations for the determination of the four positional parameters, the scale factor and an overall Debye-Waller temperature factor B. The crystal data for UI_{3} are collected in Table 1.

Table 1. Crystal data for uranium triiodide (Zachariasen, 1948)

UI_{3}, M.W. 618.74
Orthorhombic, space group $\operatorname{Ccmm}\left(D_{2 h}^{17}\right), a=14.01$ (6), $b=$ 4.32 (3), $c=10.01$ (5) $\AA, Z=4, U=605.8 \AA^{3}, D_{x}=6.78 \mathrm{~g} \mathrm{~cm}^{-3}$

The neutron powder data were analysed with the least-squares profile fitting technique of Rietveld (1967), the starting positional parameters being those of the PuBr_{3} structure-type above. The 369 observations were given weights based on the counting statistics. The neutron scattering lengths were $b_{U}=8.5 \mathrm{fm}$ and $b_{1}=$ 0.53 fm (Neutron Diffraction Commission, 1972). The final value of $R=\sum_{i=1369}\left(\left|I_{o_{i}}-I_{c_{i}}\right|\right) / \sum_{i} I_{o_{i}}$ was $0 \cdot 15$, where $I_{o_{i}}$ was a background-corrected observed intensity. The observed and calculated patterns showed good agreement (Fig. 1). The final value of $\chi=\left\{\sum\left[w\left(I_{o_{i}}-\right.\right.\right.$ $\left.\left.\left.I_{c_{i}}\right)^{2}\right] /(\mathrm{NO}-\mathrm{NV})\right\}^{1 / 2}$ was $0 \cdot 89$. The refined structural parameters for UI_{3} are given in Table 2.

Table 2. Neutron-diffraction parameters for uranium triiodide, compared with the estimated parameters for the PuBr_{3} structure-type given by Zachariasen (1948)

	Position	x	y	z	Reference
U	$4(c)$	$0.2562(7)$	0	$\frac{1}{4}$	$*$
		0.25	0	$\frac{1}{4}$	\dagger
$\mathrm{I}(1)$	$4(c)$	$-0.0789(9)$	0	$\frac{1}{4}$	$*$
		-0.07	0	$\frac{1}{4}$	\dagger
$\mathrm{I}(2)$	$8(f)$	$0.3557(6)$	0	$-0.0661(8)$	$*$
		0.36	0	-0.05	\dagger

* This work.
\dagger Zachariasen (1948).

Discussion

The present neutron-diffraction study has confirmed the PuBr_{3} structure-type for UI_{3} and established the precise molecular geometry. The positional parameters are accurate to about $0.01 \AA$.

Fig. 1. Observed and calculated neutron powder pattern profiles for uranium triiodide.

Fig. 2. The crystal structure of uranium triiodide. The y coordinates of the atom (0 or 0.5) are shown.

The coordination number for uranium in UI_{3} is eight and the coordination polyhedron is a bicapped trigonal prism. The structure is illustrated in Fig. 2. The U-I distances to the prism atoms are 3.244 (8) $(4 \times)$ and $3 \cdot 165(12)(2 \times) \AA$. The two capping atoms, coordinated through the centre of two of the three rectangular prism faces, are both distant $3-456$ (11) \AA from U . Through the third rectangular face lies an iodine atom 4.696 (16) \AA from U. This atom is too far from the uranium atom to be coordinated; it is prevented from getting closer to the uranium atom by its attachment in the opposite direction to a different uranium atom.
The uranium coordination polyhedra in $\mathrm{UF}_{3}, \mathrm{UCl}_{3}$, UBr_{3} and UI_{3} are all based on a trigonal prism; the number of capping atoms decreases along this series as the size of the anion increases. Although there is a space-group ambiguity for UF_{3}, the neutron-diffraction study of Laveissiere (1967) showed that the $P 6_{3} \mathrm{~cm}$ space group was more likely than $P \overline{3} \mathrm{cl}$. Laveissière (1967) did not discuss the uranium coordination polyhedron. However, in both possible models it may be idealized as a trigonal prism, capped through each of the five faces (11 -coordinate). In UCl_{3} and UBr_{3}, the trigonal prism is tricapped through the three rectangular faces, giving nine-coordination. In UI_{3}, one of the three capping atoms is drawn out of the uranium polyhedron, as described above, giving eightcoordination. From previous neutron studies of UF_{3} and UCl_{3} (Laveissière, 1967; Taylor \& Wilson, 1974), the ionic radius of U^{3+} for nine-coordination is approximately $1 \cdot 11 \AA$, ignoring the effect of halogen bridging. For UI_{3}, the U-I distance should be about $3 \cdot 29 \AA$ for purely ionic bonds. As six of the U-I bonds are significantly shorter than $3 \cdot 29 \AA$ (Table 3), UI_{3}, unlike the other $\mathrm{U}^{\text {III }}$ trihalides, has bonds with considerable covalent character.

Table 3. Interatomic distances (\AA) and angles
$\left({ }^{\circ}\right)$ in uranium triiodide

$\mathrm{U}-\mathrm{I}(1)$	$4 \cdot 696(16)$	$\mathrm{U}-\mathrm{I}(2)$	$3 \cdot 456(11)(2 \times)$
$\mathrm{U}-\mathrm{I}(1)$	$3 \cdot 165(12)(2 \times)$	$\mathrm{U} \mathrm{I}(2)$	$3.244(8)(4 \times)$

I-I approaches in U coordination polyhedron
$\mathrm{I}(1)-\mathrm{I}(2) 4.291(15)(4 \times) \quad$ top edge of triangular prism $\mathrm{I}(2)-\mathrm{I}(2) \quad 3.679(18)(2 \times) \quad$ top edge of triangular prism $\mathrm{I}(1)-\mathrm{I}(2) 6.862(17)(2 \times)$ between capping atoms $\mathrm{I}(2)-\mathrm{I}(2) \quad 6 \cdot 326(18) \quad$ between capping atoms

I(1)-I(2) $4.226(12)(4 \times)$ cap atom (first atom) to top of pism I(2)-I(1) 3.940 (9) ($4 \times$) cap atom (first atom) to top of prism I(2)-I(2) $3.899(15)(4 \times)$ cap atom (first atom) to top of prism

I-I distance across twofold axis

$$
I(2)-I(2) \quad 4 \cdot 256(19)
$$

The halogen atom environments in UCl_{3} and UCl_{4} (Taylor \& Wilson, 1974, 1973) are asymmetric, consisting of ten Cl and three U atoms in UCl_{3}, and ten Cl and two U atoms in UCl_{4}. Similarly, the environments of $\mathrm{I}(1)$ and $\mathrm{I}(2)$ in UI_{3} are irregular. $\mathrm{I}(1)$ (Fig. 2) is
surrounded by ten $I(2)$ atoms, two $I(1)$ atoms and three U atoms, and $I(2)$ by six $I(2)$ atoms, five $I(1)$ atoms and three U atoms.

The atomic packing tends to become more compact on going from UF_{3} to UI_{3}. The efficiency of packing, as indicated by the ratio ($\frac{4}{3} \pi r_{x}^{3}$)/volume per halogen atom in the crystal (corrected for U volume), is 0.55 for $\mathrm{UF}_{3}, 0.72$ for $\mathrm{UCl}_{3}, 0.62$ for UBr_{3} and 0.89 for UI_{3}. Large channels, such as those occuring parallel to [001] in UCl_{3} (Taylor \& Wilson, 1974) and UBr_{3}, the latter having the UCl_{3} structure-type, do not occur in UI_{3}.

The triangular edges of the prism are 3.679 (18) $(2 \times)$ and $4 \cdot 291(15)(4 \times) \AA$; thus the prism is distorted from regularity. In addition, the uranium atom is removed from a central position in the prism. The centroid of the prism has coordinates [0.2366 (4), $\left.0, \frac{1}{4}\right]$, and deviates from the uranium position $[0 \cdot 2562(7)$ $0, \frac{1}{4}$] by 0.275 (9) \AA. These deviations from regularity are a consequence of the withdrawal of the third capping atom.

As seen in Fig. 2, the UI_{3} structure is layered, the layers being parallel to the [100] face. Probably the bonding between layers is mainly due to van der

Waals attractions between iodine atoms. Anti-parallel rows of prisms occur in the layers, adjacent prisms being separated in the direction [100] by $b / 2$, or half the prism height. The UCl_{3} structure-type has a similar motif. In UCl_{3}, however, the prisms are arranged in a hexagonal pattern whereas in UI_{3} the pattern is orthogonal.

References

Bagnall, K. W., Brown, D., Jones, P. J. \& du Preez, J. G. H. (1965). J. Chem. Soc. pp. 350-353.

Brown, D. \& Edwards, J. (1972). J. Chem. Soc. Dalton, pp. 1757-1762.
Caglioti, G. (1970). Thermal Neutron Diffraction, Chap. 2, edited by B. T. M. Willis. Oxford Univ. Press.
Laveissière, J. (1967). Bull. Soc. Fr. Minér. Crist. 110, 304-307.
Neutron Diffraction Commission (1972). Acta Cryst. A28, 357-358.
Rietveld, H. M. (1967). Acta Cryst. 22, 151-152.
Taylor, J. C. \& Wilson, P. W. (1973). Acta Cryst. B29, 1942-1944.
Taylor, J. C. \& Wilson, P. W. (1974). Acta Cryst. B30, 2803-2805.
Zachariasen, W. H. (1948). Acta Cryst. 1, 265-268.

The Crystal Structures of the Barbital Salts of 2-Ethoxyethylamine and 2-Dimethylaminoethylamine

By I-nan Hsu,* D.P. Lesser \dagger and B. M. Craven
Department of Crystallography, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.

(Received 29 September 1974; accepted 11 November 1974)

Abstract

The crystal data for 2-ethoxyethylammonium 5,5-diethylbarbiturate $\left[\mathrm{C}_{4} \mathrm{H}_{12} \mathrm{NO}\right]^{+}\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{-}$are: triclinic, space group $P \overline{1} ; a=6.767$ (2), $b=10.228$ (3), $c=12.290$ (3) $\AA, \alpha=64.29$ (2), $\beta=79.14$ (2), $\nu=$ 75.51 (2) ${ }^{\circ}$, with two formula units per cell. The crystal data for 2-dimethylaminoethylammonium 5,5diethylbarbiturate $\left[\mathrm{C}_{4} \mathrm{H}_{13} \mathrm{~N}_{2}\right]^{+}\left[\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}_{3}\right]^{-}$are: orthorhombic, space group Pna2 ${ }_{1} ; a=20 \cdot 419$ (3), $b=11 \cdot 137$ (2), $c=6.777$ (2) \AA, with four formula units per cell. The crystal structure determinations were based on 3045 and 1725 integrated X-ray intensities measured on a four-circle computer-controlled diffractometer using graphite-monochromated $\mathrm{Cu} K \alpha$ radiation. The final R indices were 0.067 and 0.049 . Similarities in these crystal structures include their modes of hydrogen bonding, and the occurrence of cation disordering with respect to two rotameric forms. The syn conformation is observed for the $\mathrm{C}-\mathrm{C}$ bond in the $\mathrm{NH}_{3}^{+}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{O}$ and $\mathrm{NH}_{3}^{+}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{N}<$ moieties.

Introduction

Solution studies of the interactions of the drug-active barbiturates with phospholipids have been reported by Blaustein \& Goldman (1966) and Novak \& Swift

[^0](1972). We have been unable to obtain suitable crystals of barbiturate/phospholipid complexes for study of the structural aspects of these interactions. However, we have obtained crystal complexes of 5,5-diethylbarbituric acid or barbital (Fig. 1) with molecules containing selected functional groups of the phospholipids. Thus, the crystal structure of the hexamethylphosphoramide/ barbital complex (Hsu \& Craven, 1974a) showed strong hydrogen bonding between barbital and a phosphoryl oxygen atom. We now report the crystal-

[^0]: * Present address: Department of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 1AI.
 \dagger Present address: Liquid Crystal Institute, Lincoln Building, Kent State University, Kent, Ohio 44240, U.S.A.

